The Crystal and Molecular Structure of 2-Amino-3-Methylbenzoic Acid*

By George M. Brown \dagger and Richard E. Marsh
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.

(Received 14 February 1962)

Abstract

The structure of crystals of 2 -amino-3-methylbenzoic acid has been determined and refined extensively by three-dimensional least-squares techniques. The crystals are monoclinic, space group $P 2_{1} / c$, with $a=11.480, b=4.044, c=15.792 \AA$ and $\beta=91^{\circ} 18^{\prime}$. There are four molecules in the unit cell, and the calculated density is $1.361 \mathrm{~g} . \mathrm{cm} .^{-3}$. Positional and temperature-factor parameters for the eleven heavy atoms and positional coordinates for the nine hydrogen atoms in the molecule were included in the refinement. In addition, separate visual intensity estimates made by the two authors were treated independently, yielding two sets of final parameters. There are no significant differences in the two sets of parameters.

Except for two of the hydrogen atoms of the methyl group, the 2-amino-3-methylbenzoic molecule is approximately planar. The bond distances suggest an appreciable contribution of the form

Two hydrogen bonds are formed: an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond linking pairs of molecules together across symmetry centers and an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond.

Introduction

A preliminary determination by one of us had shown that crystals of 2-amino-3-methylbenzoic acid (I) are

(I)
monoclinic and characterized by symmetry and unitcell parameters likely to allow facile solution for the crystal structure. It seemed, moreover, that there were a number of questions on which some information could be obtained by structure analysis of crystals of the compound (hereinafter often referred to as AMBA). Very little is known about variations in bond lengths and valence angles within a benzene ring so asymmetrically substituted as the one in this molecule or about the mutual distortional effects produced by the three substitutent groups -COOH , $-\mathrm{NH}_{2}$, and $-\mathrm{CH}_{3}$ in vicinal orientation. Also, of course,

[^0]there was the question of what sort of hydrogen bonding might be displayed in the crystal structure. On the basis of these considerations, it was decided to undertake a complete analysis by three-dimensional methods.

Although it was not so planned from the beginning, the analysis gradually took on, at least in part, the character of a test bearing on the limitations of refinement on data obtained by visual estimation of intensities recorded on film. Early in the work it became clear that a rather precise determination could eventually be attained; and subsequently considerable effort was put forth to insure this outcome, to the extent that a new set of photographic intensities were recorded and estimated by the two authors independently. The two sets of intensity data so derived from the new films by the two authors were processed separately throughout, and refinement was carried out separately on each set of data. Eventually the rather pleasing result was reached that the structures obtained in the two separate refinements are but trivially different.

Experimental data and preliminary solution

 Crystal specimensA sample of AMBA was furnished by Prof. James English of Yale University as part of the Treat B. Johnson collection of organic chemicals. Our crystal specimens were selected from the original samples
wihthut further treatment. A melting point 174.4$174 \cdot 9^{\circ} \mathrm{C}$. was determined with a calibrated Anschütz thermometer in a Herschberger type of apparatus. This agrees fairly well with the melting point of $176^{\circ} \mathrm{C}$. reported by Bergmann \& Pelchowicz (1953) and is somewhat higher than other reported values (see Beilstein, 1931, 1933, 1951).

The crystals were in the form of needles elongated along b, almost rectangular in cross section, showing characteristically the pinacoid forms $\{100\}$ and $\{001\}$. Three different specimens were used in all. Specimen I was about 1 mm . long and $0.18 \times 0.25 \mathrm{~mm}$. in cross section. Specimen II, more carefully chosen later, was about the same length but more nearly square in cross section, approximately 0.23 mm . on a side. Specimen III was cut with a razor blade from a larger crystal for mounting along the a axis. It was approximately cubic, 0.2 mm . on a side.

Unit cell, space group and intensity measurements

The space group was indicated by the systematic absences ($h 0 l, l$ odd and $0 k 0, k$ odd) to be $P 2_{1} / c$. Approximate values for the unit-cell parameters were computed from measurements on Weissenberg films. More precise values were obtained by least-squares refinement on data from measurements on two Strau-manis-type rotation photographs. An $h 0 l$ film was recorded using crystal specimen I and unfiltered $\mathrm{Cu} K$ radiation, and an $h k 0$ film was recorded using specimen III and unfiltered $\operatorname{Cr} K$ radiation. These two films were indexed with the aid of the corresponding zero-layer Weissenberg photographs. The four cell parameters were adjusted to give the best fit between observed and calculated Bragg angles for nineteen resolved reflections.* For each observation a weight was assigned equal to the reciprocal of the estimated variance of the determination of θ for the center of gravity of the reflection. Since the reflections on the $h k 0$ Straumanis photographs, generally rather diffuse, were not numerous in the high angle region, it was necessary to use a number of unresolved $\alpha_{1}-\alpha_{2}$ doublets to secure data for determination of the translation b. For most of the doublets the weights were reduced arbitrarily by a factor of two; for others, by a factor of four. After convergence of the leastsquares refinement, the value of the standard deviation of an observation of unit weight $\left(\Sigma \omega(\Delta \theta)^{2} /\right.$ $[n-p])^{\frac{1}{2}}$, where n is the number of observations and p the number of parameters, was 0.77 . That this value is less than unity might suggest that errors of observation have been slightly overestimated in the weighting.

The cell parameters are given in Table 1, with limits of error. The latter are about four times the

[^1]Table 1. Unit-cell parameters of 2-amino-3-methylbenzoic acid

$\left(\lambda\left(\mathrm{Cu} \mathrm{K} \alpha_{1}\right)=\right.$				$1 \cdot 5405 \AA)$
Parameter	Value	Error (see text)		
a	$11 \cdot 4803 \AA$	$17\left(\AA \times 10^{-4}\right)$		
b	$4 \cdot 0445$	14		
c	$15 \cdot 7923$	36		
β	$91^{\circ} 18 \cdot 5^{\prime}$	2^{\prime}		

standard deviations estimated from least squares and correspond to the 99.9% confidence limits, assuming that the deviation of the estimated value of each parameter from its true value has Student's t distribution (International Tables for X-ray Crystallography, 1959).

The density calculated on the basis of four molecules of acid per cell is $1-361 \mathrm{~g} . \mathrm{cm} .^{-3}$. Since this was considered a reasonable value and the formula and purity of the acid were never in question, the density was not determined experimentally.
The first set of equi-inclination Weissenberg films $h k l$ where $k=0,1,2,3$ and 4 was taken using the crystal specimen I and $\mathrm{Cu} K$ radiation. Intensities were read from the films by one observer with use of the usual scale prepared by recording on one film various appropriate numbers of 'flashes' of the same reflection. From the hol data, after correction by the appropriate factors for the Lorentz and polarization effects, a Wilson (1949) plot was made to fix the scale approximately and to estimate an over-all isotropic thermal parameter B of $2 \cdot 1 \AA^{2}$. Coefficients for a Patterson projection on (010) were prepared by sharpening (Patterson, 1935) the values $|\vec{F}|_{h 02}^{2}$ by multiplication by the factor $\left(1 / \hat{f}_{0}^{2}\right) \exp \left(2 R \sin ^{2} \theta / \lambda^{2}\right)$ and by modifying them further by multiplication by the factor $(2 \sin \theta / \lambda)^{4} \exp \left[-(4 \cdot 4 \sin \theta / \lambda)^{2}\right]$ (see Waser \& Schomaker, 1953; Shoemaker, 1947; Donohue \& Trueblood, 1952). The coefficients were further adjusted so as to remove a spherical peak at the origin, and the Patterson synthesis was computed. From the Patterson map a promising orientation of the molecule was rather easily found. By use of structure-factor graphs the position of the molecule was indicated to be the reasonable one in which the carboxylic acid group lies near a center of symmetry in projection, in close proximity to and presumably hydrogenbonded to a similar group in a neighboring molecule. After a preliminary structure-factor calculation seemed to confirm the essential correctness of the proposed structure, it was decided to initiate least-squares refinement on the $F(h 0 l)$'s at once.
In the least-squares refinement weights ω were set equal to $1 / F_{o}^{2}$ for those reflections with $F_{o} \geqq 4 F_{\text {min. }}$, where $F_{\text {min. }}$ is the minimum observable F_{o}, and to $\frac{1}{4} F_{o} F_{\text {min }}$. for those observed reflections with $F_{o} \leqq$ $4 F_{\text {min. }}$. The value of $4 F_{\text {min. }}$. was taken to be 3.0 . Reflections too weak to be observed above background were given zero weight, as was also the (100)
reflection, which had too low a Bragg angle to be recorded.

In the two-dimensional refinement ten least-squares cycles were carried out in which the x and z parameters of the carbon, oxygen, and nitrogen atoms were optimized. Intermixed with the least-squares calculations were three difference syntheses on (010), from which individual anisotropic thermal parameters of the heavy atoms were estimated, as well as approximate x and z coordinates for the nine hydrogen atoms. The usual discrepancy factor R (omitting non-observed reflections) fell from $0.47 *$ to 0.073 at the end of the refinement, when the calculated structure factors included anisotropic thermal parameters and hydrogen parameters.

So pleasing was the promise of a rather precise structure determination as indicated by the level of agreement for the $h 0 l$ data that it was decided to take a new set of Weissenberg photographs. Crystal specimen II was selected at this point as the best available. With some care, multiple-film exposures of $30-35$ hours duration were made for the layers $k=0$ to 4 . The resulting films were somewhat more satisfactory than those of the original set as regards variation in spot shape and also as regards the ratio of strongest to weakest intensity-about $50,000: 1$.

A few Weissenberg films were taken using crystal specimen III, mounted along the c axis. It was soon clear, however, that specimen III was not an acceptable one for recording intensities. The appearance of rings, streaks, and generally somewhat diffuse spots on the films suggested that the crystal had been shattered when it was cut. No other crystal could be cut that was more satisfactory, and the attempt to collect data from a crystal mounted about an axis other than b was abandoned. Even so, only about twenty reflections ($h 5 l$'s) within the limiting sphere for copper radiation were unrecorded. A total of seven low-order reflections were not observed because they fell within the solid angle subtended by the beam stop. The total number of reflections in the range of reciprocal space explored was 1579 , of which 185 were too weak to be observed above background.

The data of the layers $k=0$ to 3 were scaled together through use of data from precisely timed equi-inclination and anti-inclination Weissenberg photographs, one pair for each value of k. The two photographs, each taken with exactly the same oscillation range (approximately 90°), were recorded on different portions of the same film. The procedure, which is essentially that of Stadler (1950), was found to be quite satisfactory. Data of the fourth layer were later correlated to the main body of data empirically at an advanced stage of the structure analysis.

The entire process of reading of intensities, determination of film factors, averaging, and correlation

[^2]was carried out by the two authors working independently of each other. Two different calibration strips were employed, prepared by identical procedures using the same reflection. Each author used his own approach to the problems presented by variation in spot size and by $\alpha_{1}-\alpha_{2}$ splitting. The resulting two sets of data, A and B, were not combined, but instead they were used in separate refinements of the structural parameters.
In general, the agreement between the two sets of observations was good. There were, however, large systematic discrepancies for a number of low-order reflections on the non-equatorial photographs where the spots are contracted. These differences were clearly due to differing estimates of the effect of the contraction on the intensity of the spot. Upon comparison with the final set of calculated structure factors, it appears that one of us (R. M., set B) underestimated the effect. There were also small differences in the two sets of film factors, causing further systematic discrepancies among the strong reflections.
The F_{o} values of the new set of data A were scaled by comparison of the $F(h 0 l)$'s with those from the original data from crystal I. Structure analysis was continued with use of data A.
Approximate y coordinates for the eleven heavy atoms were found by systematic trial calculations of 0 kl structure factors, beginning with the information about the approximate tilt of the molecule that was at hand from the lengths of the bonds in the benzene ring as they appeared in the projection on (010). The y coordinates were refined somewhat (to $R=0.21$, hydrogens excluded) by least-squares and differencemap calculations on the $0 k l$ data.

Three-dimensional refinement

Three-dimensional refinement was carried out mainly by the method of least-squares. Two difference maps were calculated at appropriate stages, the first to obtain hydrogen coordinates and the second to refine them. In the least-squares calculations the same weighting scheme was used as in the two-dimensional refinement discussed above. Refinement was first carried out on data A. Seven unrecorded low-order reflections were given zero weight, as were six other reflections of large $\left|F_{o}\right|$ which were feared to be subject to extinction. The least-squares calculations were diagonal with respect to the atomic coordinates. In those cycles in which anisotropic thermal parameters of the Debye factor $\exp \left(-\Sigma \Sigma \beta_{i j} h_{i} h_{j}\right)$ were adjusted, cross terms between the various $\beta_{i j}$'s of each atom were retained.
Refinement proceeded very smoothly. In the first few stages a number of indexing errors and arithmetic errors in the data processing, indicated by outstanding discrepancies between F_{o} and F_{c} values, were corrected. A synopsis of the entire refinement procedure is presented in Table 2, beyond which little further

Table 2. Synopsis of three-dimensional refinement of 2-amino-3-methylbenzoic acid
In this table X, Y, Z and x, y, z denote coordinates of heavy atoms and hydrogen atoms, respectively

Data	Calculation	Refining or determining	Discrepancy factor $R(\%)$	$\Sigma \omega(\Delta F)^{2}$	Remarks*
A	L.S. cycles 1-3	Y	21.2 to 16.1	2428 to 1173	Starting parameter from 2-D refinement
	L.S. 4-5	X, Y, Z	15.6 to 15.3	1132 to 1158	
	L.S. 6-8	$X, Y, Z, \beta_{i j}$	15.5 to 11.0	1055 to 527	Anisotropic thermal refinement begun
	3-D diff. map 1	x, y, z			Hydrogen peaks of 0.31 to $0.55 \mathrm{e} . \AA^{-3}$
	L.S. 9-15	$X, Y, Z, \beta_{i j}$	$8 \cdot 1$ to 6.3	300 to 171	Hydrogens included in F_{c} 's. $F(h 4 l)$'s first included in L.S. 11
	Structure factors		$9 \cdot 2$	152	Hydrogens omitted
	3-D diff. map 2	x, y, z			Hydrogen peaks of 0.48 to $0.67 \mathrm{e} . \AA^{-3}$
	L.S. 16-17	$X, Y, Z, \beta_{i j}$	$5 \cdot 9$ to $5 \cdot 8$	152 to 143	Hydrogens included in F_{c} 's
	L.S. 19-20	x, y, z	$5 \cdot 1$ to $5 \cdot 1$	44 to 48	Used only reflections with $\sin \theta \leqq 0.7$
	Structure factors		$5 \cdot 6$	126	Final F_{c} 's for parameters refined on data A
B	L.S. 18	$X, Y, Z, \beta_{i j}$	$7 \cdot 4$	159	Heavy-atom parameters from L.S. 17, hydrogen parameters from 3-D difference map 2
	L.S. 21	$X, Y, Z, \beta_{i j}$	$7 \cdot 4$	145	Hydrogen parameters from L.S. 20. Final F_{c} 's for parameters refined on data B

* Overall scale factor adjusted in each L.S. cycle. Individual scale factors for each layer l adjusted between each cycle after L.S. 10 .
explanation is needed. In the first three stages only the shifts of the y parameters were applied, since the starting y parameters were much less reliable than the x and z parameters. Refinement of thermal parameters began in cycle 6 . The $F_{0}(h 4 l)$ data, scaled to the $F_{c}(h 4 l)$ of cycle 10 , were first included in the least-squares in cycle 11.
The first 3-D difference map, following L.S. 8, indicated very clearly the approximate coordinates of the nine hydrogen atoms at the centers of peaks of 0.31 to $0.55 \mathrm{e} . \AA^{-3}$. Hydrogen contributions were included in the subsequent least-squares calculations, though the hydrogen parameters were usually held fixed. A few of the hydrogen coordinates determined from difference map 1 were modified slightly to make -as was supposed-more chemical sense. Following

Fig. 1. Composite map on (010) of electron density through centers of hydrogen atoms, from second three-dimensional difference map. The contours are at $0 \cdot 2,0 \cdot 4$, and $0 \cdot 6 \mathrm{e} . \AA^{-3}$.
cycle 15 , structure factors without hydrogen contributions were computed for use in a subsequent difference map 2, from which new hydrogen coordinates were derived. The hydrogen peaks in difference map 2, of height 0.48 to 0.67 e. \AA^{-3}, were somewhat more satisfactory in appearance than those in difference map 1. There were no regions in which there was appreciable density other than those in which the hydrogens were located, as indeed was true also in the case of map 1 . The appearance of the hydrogen peaks in map 2 is shown in Fig. l.

In least-squares cycles 19 and 20 , by which the refinement on data A was concluded, only the coordinates of the hydrogen atoms were adjusted, all other parameters being held fixed. Each hydrogen atom was arbitrarily assigned anisotropic thermal parameters equal to those of the heavy atom to which it is attached, except that increments equivalent to 0.50 $\mathrm{cm} .^{-16}$ in the isotropic B were added. These last refinement cycles were apparently meaningful, for the resulting new coordinates appeared to be generally more sensible chemically (see discussion of molecular structure below). In addition, there was a slight decrease in $\Sigma \omega(\Delta F)^{2}$ and in the R factor (see Table 2) when the new hydrogen coordinates were used in the calculation of structure factors.

After the completion of the refinement on data A, the electron density projected on (010) was computed. The projection is shown in Fig. 2.

Refinement on data B was initiated in L.S. 18 using the structural parameters reached in the refinement on data A through cycle 17. The last cycle, no. 21, used the final hydrogen parameters from refinement

Fig. 2. Final Fourier projection on (010). Contours are at intervals of 1 e. \AA^{-2}, beginning with the $1 e . \AA^{-2}$ contour, which is dashed.
cycle 20 on data $A .^{*}$ Structure factors corresponding to the revised heavy-atom parameters from L.S. 21 were not computed. As a consequence the values of $\Sigma \omega(\Delta F)^{2}$ and of the standard deviations of coordinates for structure B appear at a very slight disadvantage relative to those for structure A.

All calculations required for solution and refinement of the structure were carried out on a Datatron

Table 3. Final coordinates $\left(\times 10^{4}\right)$ of carbon, oxygen, and nitrogen atoms from refinements A and B

Standard errors $\left(\times 10^{5}\right)$ appear in parentheses

Atoma		x	y	z
C_{1}	A	$2859(12)$	$5817(33)$	$1014(8)$
	B	$2860(12)$	$5806(36)$	$1013(9)$
C_{2}	A	$2901(11)$	$5197(29)$	$1896(8)$
	B	$2900(11)$	$5197(33)$	$1896(9)$
C_{3}	A	$1955(12)$	$3511(32)$	$2267(9)$
	B	$1954(13)$	$3508(35)$	$2268(10)$
C_{4}	A	$1029(14)$	$2507(37)$	$1758(11)$
	B	$1028(15)$	$2501(41)$	$1759(12)$
C_{5}	A	$980(14)$	$3118(40)$	$889(10)$
	B	$978(15)$	$3111(45)$	$890(11)$
C_{6}	A	$1889(13)$	$4749(37)$	$526(9)$
	B	$1889(14)$	$4752(41)$	$526(9)$
C_{7}	A	$3799(12)$	$7579(35)$	$594(8)$
	B	$3799(13)$	$7570(39)$	$594(9)$
C_{8}	A	$1976(15)$	$2833(41)$	$3203(10)$
	B	$1974(17)$	$2824(47)$	$3202(11)$
N	A	$3825(\mathrm{ll})$	$6125(35)$	$2402(8)$
	B	$3826(12)$	$6132(40)$	$2401(8)$
O_{1}	A	$3658(11)$	$7879(38)$	$-234(7)$
	B	$3656(12)$	$7879(41)$	$-235(7)$
O_{2}	A	$4665(10)$	$8745(32)$	$963(7)$
	B	$4665(11)$	$8739(34)$	$963(8)$

* It is apparent that use of hydrogen parameters based on data A in refinement of heavy-atom parameters on data B makes the two refinements on data A and B no longer completely independent. We do not think, however, that this is important.

205 computer. Each least-squares cycle in which heavy-atom coordinates and $\beta_{i j}$'s were adjusted and hydrogen-atom contributions to structure factors included required about fourteen hours of machine time. We are grateful to Dr Albert Hybl for much assistance in use of the least-squares program.

Final parameters and precision

The final coordinates of the eleven heavy atoms are given in Table 3 for each of the two separate sets of data, A and B. Standard deviations, calculated from the diagonal terms of the least-squares inverse matrices, are indicated in parentheses after each coordinate. The hydrogen coordinates from the leastsquares calculations on data A are given in Table 4. Results of the least-squares adjustment of hydrogen coordinates suggest a standard error of about $0.03 \AA$ for each coordinate Final thermal parameters $\beta_{i j}$, defined by the Debye factor

Table 4. Final hydrogen coordinates $\left(\times 10^{3}\right)$, from least squares on data A

Atom	x	y	\boldsymbol{z}
H_{1}	32	129	203
H_{2}	32	239	51
H_{3}	189	515	-9
H_{4}	374	582	297
H_{5}	438	735	219
H_{6}	198	480	355
H_{7}	131	149	337
H_{8}	268	143	337
H_{9}	430	899	-44

Table 5. Final thermal parameters $\beta_{i j}\left(\times 10^{5}\right)$ from refinements A and B

Atom		β_{11}	β_{22}	β_{33}	β_{12}	β_{23}	β_{13}
C_{1}	A	594	4115	265	283	-78	-35
	B	619	3961	276	263	-83	-26
C_{2}	A	548	3710	278	249	-39	-18
	B	578	3528	286	247	-44	-27
C_{3}	A	660	3406	328	176	62	-1
	B	686	3339	333	181	62	2
C_{4}	A	698	4230	410	-117	-26	-4
	B	712	4145	412	-61	-1	-4
C_{5}	A	734	5327	412	-151	-195	-132
	B	747	5327	407	-164	-214	-120
C_{6}	A	715	5219	293	170	-173	-97
	B	728	5343	288	161	-166	-78
C_{7}	A	635	5309	228	275	-8	-3
	B	662	5197	252	278	-14	-5
C_{8}	A	846	5999	342	-91	313	40
	B	861	6060	343	-119	308	50
$\mathrm{~N}^{2}$	A	647	7354	255	-206	-148	60
	B	668	7164	263	-233	133	-64
O_{1}	A	904	10172	242	-617	170	-34
	B	922	10002	234	-683	134	-37
O_{2}	A	677	9100	277	-461	145	-24
	B	713	8814	301	-466	145	-16

Table 6. Observed and calculated structure factors $(\times 10)$
Each group of four columns contains, from left to right, indices l, observed structure factors A, observed structure factors B, and calculated structure factors A. Observed values marked with asterisks were given weights of zero, as were also the unobserved values marked with the < signs

$$
\exp \left(-\sum_{i=1}^{3} \sum_{j=1}^{3} \beta_{i j} h_{i} h_{j}\right)
$$

are presented in Table 5. No standard deviations for thermal parameters were provided by the leastsquares program employed in the refinement. Calculated and observed structure factors are given in Table 6.

That the precision of the refinement on the one set of data is essentially the same as that of the refinement on the other is apparent at once from the two values of $\Sigma \omega(\Delta F)^{2}$ for A and B in Table 2 and also from the standard deviations in Table 3. The slight variation of magnitude (ranging from 1.2 to $1.9 \AA \times$ 10^{-3}) of the standard deviation are very similar in the two sets of coordinates. The corresponding variations in standard deviations of bond length and of angles are of course very similar also (ranging from 1.7 to $2.3 \AA \times 10^{-3}$ and from $0 \cdot 12^{\circ}$ to $0 \cdot 16^{\circ}$ respectively).

It is now appropriate, and most interesting, to analyze the two sets of parameters to determine what

Table 7. Statistical comparison of structures A and B for 2-amino-3-methylbenzoic acid

Differences in		Maximum	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	Approx. st. dev. of difference
Heavy-atom positions	x	0.0025 A	0.0012 A	$0.0025 \AA$
	y	0.0045	0.0022	0.0025
	z	0.0025	0.0010	0.0025
	r	0.0046	0.0036	0.0025
Bond lengths between heavy atoms		0.005	$0 \cdot 002$	0.003
Bond angles involving heavy atoms only		$0 \cdot 16^{\circ}$	0.08°	$0 \cdot 2^{\circ}$
Root-mean-square displacements in principal axis directions		0.009 A	$0 \cdot 002 \AA$	

Multi-parameter significance tests on differences in the 11 pairs of heavy-atom x 's $T^{2}=6 \cdot 0, P \gg 5 \%$, not significant 11 pairs of heavy-atom y 's $T^{2}=16 \cdot 1, P>5 \%$, not significant
11 pairs of heavy-atom z 's $T^{2}=5 \cdot 8, P \gg 5 \%$, not significant
33 pairs of heavy-atom
x, y, z 's
$T^{2}=27 \cdot 9, P>5 \%$, not significant

Table 8. Description of thermal ellipsoids
Axis 1 of the reference Cartesian system is along the vector from C_{6} to C_{3}; axis 2 is in the direction of the product of this vector crossed into the vector from C_{5} to C_{1}; axis 3 completes the right-handed system

Ellipsoid	Axis	From refinement A				From refinement B			
		R.m.s.d.(\AA)	Angle (${ }^{\circ}$) to ref. axis			R.m.s.d. (\AA)	Angle (${ }^{\circ}$) to ref. axis		
			1	2	3		1	2	3
C_{1}	1	$0 \cdot 172$	79	167	97	$0 \cdot 171$	92	176	87
	2	$0 \cdot 178$	152	103	65	$0 \cdot 183$	156	87	66
	3	0.215	116	88	154	0.215	114	92	156
C_{2}	1	$0 \cdot 165$	79	168	95	$0 \cdot 163$	80	170	89
	2	$0 \cdot 184$	150	102	62	$0 \cdot 185$	148	98	59
	3	0.204	118	90	152	$0 \cdot 208$	120	96	149
C_{3}	1	$0 \cdot 164$	109	23	102	$0 \cdot 163$	108	23	103
	2	$0 \cdot 204$	158	105	75	0.206	161	106	80
	3	0.213	101	106	161	0.216	96	106	163
C4	1	$0 \cdot 185$	96	41	130	0.185	100	35	123
	2	$0 \cdot 217$	107	54	42	0.217	109	62	35
	3	0.229	19	74	81	0.229	21	72	79
C5	1	$0 \cdot 182$	60	73	145	$0 \cdot 183$	61	70	143
	2	$0 \cdot 219$	115	25	86	$0 \cdot 222$	116	27	83
	3	0.254	40	72	55	0.252	41	73	54
C_{6}								77	120
	2	0.202	99	10	87	0.205	101	13	84
	3	0.239	124	93	146	0.236	121	91	149
C_{7}	1	$0 \cdot 170$	10	83	98	$0 \cdot 178$	11	85	99
	2	$0 \cdot 192$	93	21	69	$0 \cdot 193$	93	15	75
	3	0.223	100	70	158	0.224	100	76	163
C_{8}	1	$0 \cdot 188$	28	108	70	$0 \cdot 188$	28	106	68
	2	$0 \cdot 238$	113	96	24	0.239	118	127	49
	3	0.239	104	161	102	$0 \cdot 242$	87	139	131
N	1	0.171	22	95	112	$0 \cdot 174$	24	95	113
	2	$0 \cdot 209$	68	81	24	0.212	67	86	24
	3	0.252	92	170	80	0.250	93	174	84
O_{1}	1	$0 \cdot 173$	8	87	97	$0 \cdot 170$	9	86	98
	2	0.232	83	88	7	0.230	82	91	8
	3	0.303	87	176	88	$0 \cdot 304$	86	176	91
O_{2}	1	$0 \cdot 185$	14	89	104	$0 \cdot 193$	9	89	99
	2	0.205	77	80	16	$0 \cdot 209$	82	83	11
	3	0.282	87	170	81	$0 \cdot 279$	88	173	83

differences, if any, have statistical significance. First we consider relative displacements of corresponding atoms between the two structures and differences between corresponding bond lengths and angles, in each case in relation to the appropriate standard deviations of the differences, calculated for two independent determinations (see Table 7). Clearly there are no significant differences between the two structures so far as positions of heavy atoms are concerned. This conclusion is strengthened by results of application of the statistic T^{2} (Cruickshank \& Robertson, 1953) to the values of $\Delta x, \Delta y, \Delta z^{*}$ (see again Table 7).

No statistical tests can be applied to the differences between the two sets of $\beta_{i j}$'s, since standard deviations are not available. It is noteworthy, however, that the computed root-mean-square vibrational displacements in the principal-axis directions differ by no more than $0.009 \AA$ maximum and $0.002 \AA$ average. Moreover, the orientations of the principal axes are markedly similar (see Fig. 8, Table 8). It seems probable that there is little if any more significance in the

* In applying the multi-parameter significance test T^{2}, covariances have, of necessity, been neglected in approximating the values of T^{2}. We do not think this neglect invalidates the conclusion, since the covariances are surely quite small relative to the variances.
differences in thermal parameters than in those between atomic coordinates.

The fact that the two least-squares refinements on the two sets of data are of about equal precision and that the resulting two structures are not found significantly different on statistical analysis is not inconsistent with the observation made earlier that there are a number of discrepancies among large, low-order structure factors between the two sets of data. Since the discrepant reflections have relatively low weights, the effect of the discrepancies is more obvious as it affects the R factor (see Table 2) than as it affects precision.

Discussion of structural results

Packing of molecules and hydrogen bonding

A model of the structure of AMBA viewed down the b axis is shown in Fig. 3. There are no unusual features of intermolecular packing. As already indicated, the structure exhibits the frequently observed feature of dimerization of acid molecules through hydrogen bonding between carboxylic acid groups about a symmetry center. The $\mathrm{O}_{1}-\mathrm{O}_{2}$ distance is $2 \cdot 645 \AA$, a rather characteristic value, and the angle $\mathrm{O}_{1}-\mathrm{H} \cdots \mathrm{O}_{2}$ is 170°.

There is no other intermolecular hydrogen bonding. One of the two hydrogen atoms on nitrogen does not participate in hydrogen bonding. The other is involved in an intramolecular bond $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{2}$ of which the angle is 131° and the $\mathrm{N}-\mathrm{O}$ distance is $2.706 \AA$. Other details of distances and angles involved in hydrogen bonding are shown in Figs. 4 and 5.

Fig. 4. Average bond lengths (\AA) in the molecule of 2 -amino-3methylbenzoic acid from the two refinements A and B. Standard deviations ($\times 10^{4}$) from refinement A are given in parentheses for bonds between heavy atoms.

Fig. 5. Average bond angles in the molecule of 2 -amino-3methylbenzoic acid from the two refinements A and B. Standard deviations (degrees $\times 10^{2}$) from refinement A are given in parentheses for those angles involving heavy atoms only.

Intermolecular distances have been exhaustively calculated to a limit of $5 \AA$. No unusual van der Waals approaches occur, the shortest $\mathrm{H}-\mathrm{H}$ distance being $2 \cdot 6 \AA$. The perpendicular spacing between adjacent benzene rings in the molecules stacked along the b axis is $3.53 \AA$. Packing drawings corresponding to views along [010] and [101] are shown in Figs. 6 and 7.

Fig. 6. Packing drawing of the structure of 2 -amino-3-methylbenzoic acid, view along [010].

Fig. 7. Packing drawing of 2-amino-3-methylbenzoic acid structure, view along [101].

Thermal ellipsoids

For each of the two sets of $\beta_{i j}$'s, principal-axis transformations have been performed on the thermal ellipsoids of the eleven heary atoms and the orientation of each axis and the root-mean-square vibrational displacement along each axis computed. The numerical results are given in Table 8, and a pictorial representation of them is shown in Fig. 8, in which the mean-square displacement in each of the principalaxis directions is plotted on the axis as it projects on

Fig. 8. The mean-square vibrational displacements in prin-cipal-axis directions projected onto the average plane of the benzene ring (see text for further explanation). (a) Structure A. (b) Structure B.
the average plane of the benzene ring. For aid in perception of the axial directions, ellipses have been drawn through the points representing the meansquare displacements.*

Fig. 9. Deviations (\AA) of atoms in structure of 2-amino-3methylbenzoic acid from best plane of the benzene ring. For each heavy atom, the first value is for structure A, the second for structure B.

The very close resemblance between the Figs. 8(a) and $8(b)$ seems remarkable. The difference in appearance of the two ellipsoids for C_{8} is, in fact, misleading. It arises because of the large uncertainty in orientation of axes when an ellipsoid is very nearly an ellipsoid of revolution. As is fairly clear from the figure, for most of the atoms one of the principal axes lies close to the normal to the molecular plane. For each of the atoms $\mathrm{N}, \mathrm{C}_{8}, \mathrm{O}_{1}$, and O_{2} the longest principal axis lies near the normal.

No attempt has been made to treat the molecule, or any portion of it, as a rigid body in combined translatory and oscillatory vibrations. The appearance of the ellipsoids in Fig. 8 suggests, however, that the largest translational amplitudes lie along the $\mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{C}_{4}$ axis of the molecule and that librational motion of the whole molecule takes place about its center of gravity, located inside of the benzene ring somewhere near the midpoint of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond, accompanied by some intramolecular vibration.

Molecular structure

It would seem reasonable to take as the 'best' values for the bond lengths and angles the average values from the two sets of parameters A and B. These averages are shown in Figs. 4 and 5. The indicated standard deviation attached to each value of

[^3]length and angle involving only heavy atoms is the standard deviation from refinement A.*

Table 9. Final bond lengths and angles for structures A and B

Standard errors of bond lengths $\left(\times 10^{4}\right)$ and of angles $\left(\times 10^{2}\right)$ are given in parentheses

Bond	$A(\AA)$	$B(\AA)$	Angle	$A\left({ }^{\circ}\right)$	$B\left({ }^{\circ}\right)$
$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.415(18)	1-415(19)	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	118.8(12)	$118.9(12)$
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1-420(19)	$1 \cdot 422(20)$	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	119.2(13)	$119 \cdot 1(14)$
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1-380(21)	$1 \cdot 380(23)$	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	122-3(14)	$122 \cdot 3(16)$
$\mathrm{C}_{4}-\mathrm{C}_{5}$	$1 \cdot 395(23)$	$1-395(26)$	$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$	118.8(14)	$118 \cdot 8(15)$
$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.371(22)	$1 \cdot 376(24)$	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{1}$	121-3(13)	$121 \cdot 2(14)$
$\mathrm{C}_{1}-\mathrm{C}_{6}$	1-407(19)	$1 \cdot 405(21)$	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}$	119.6(12)	$119 \cdot 7(13)$
$\mathrm{C}_{1}-\mathrm{C}_{7}$	$1 \cdot 465(19)$	$1 \cdot 463(21)$	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{7}$	118.9(12)	$118.9(13)$
$\mathrm{C}_{2}-\mathrm{N}$	$1 \cdot 367$ (17)	$1 \cdot 368(19)$	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{7}$	121.5(12)	$121 \cdot 5(12)$
$\mathrm{C}_{3}-\mathrm{C}_{8}$	I-502(20)	$1 \cdot 500(23)$	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{N}$	122-4(12)	$122 \cdot 3(12)$
$\mathrm{C}_{7}-\mathrm{O}_{1}$	$1 \cdot 319(17)$	$1 \cdot 322(18)$	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{N}$	118.8(12)	$118 \cdot 8(13)$
$\mathrm{C}_{7}-\mathrm{O}_{2}$	1-233(18)	$1 \cdot 235(19)$	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{8}$	$119.9(13)$	$120 \cdot 1(14)$
$\mathrm{O}_{1}-\mathrm{O}_{2}{ }^{*}$	2.646(18)	$2 \cdot 647(19)$	$\mathrm{C}_{4}-\mathrm{C}_{3}-\mathrm{C}_{8}$	120.9(14)	$120 \cdot 8(15)$
			$\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{O}_{1}$	114.7(13)	$114 \cdot 7(13)$
			$\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{O}_{2}$	124.5(12)	$124 \cdot 6(13)$
			$\mathrm{O}_{1}-\mathrm{C}_{7}-\mathrm{O}_{2}$	$120 \cdot 8(13)$	120.7(15)

$*$ Hydrogen bond. Atom $\mathrm{O}_{2}{ }^{\prime}$ is related to atom O_{2} through
center of symmetry.

Since we know of no other instance in which comparable refinements of the same structure have been carried out on two different sets of observations, it seems of interest to report here, in addition to the average values of the bond lengths and angles, the individual values A and B, for detailed comparison. These are given in Table 9. The largest difference between corresponding bond lengths is $0.005 \AA$ and the average difference is $0.002 \AA$.

There are obviously quite significant departures from hexagonal symmetry in the benzene ring of the molecule. The rather short $\mathrm{C}_{2}-\mathrm{N}, \mathrm{C}_{1}-\mathrm{C}_{7}, \mathrm{C}_{3}-\mathrm{C}_{4}, \mathrm{C}_{5}-\mathrm{C}_{6}$ bonds and the somewhat long ring bonds $\mathrm{C}_{6}-\mathrm{C}_{1}$, $\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{2}-\mathrm{C}_{3}$ indicate some resonance involving a structure as follows:

However, the shortness of the $\mathrm{C}_{2}-\mathrm{N}$ bond and the $\mathrm{C}_{1}-\mathrm{C}_{7}$ bond may be to a considerable extent a hybridization effect. Similarly, the short $\mathrm{C}_{3}-\mathrm{C}_{8}$ bond probably results from a combination of hyperconjugation and hybridization effects.

The bond lengths and angles involving hydrogen, which are shown in Figs. 4 and 5, have been calculated

[^4]from the parameters resulting from the least-squares treatment of data A. We prefer these lengths and angles over those calculated from the second 3-D difference map, because the bond lengths are systematically somewhat longer, and therefore probably more nearly correct, and because, formally at least, they also correspond to a higher degree of refinement. The average $\mathrm{C}-\mathrm{H}$ bond is $0.99 \AA$ in length in the methyl group and $1.01 \AA$ in the benzene ring; the average $\mathrm{N}-\mathrm{H}$ distance in the amino group is $0.90 \AA$.

Although the over-all symmetry of the molecule, including the hydrogen atoms, is very nearly that of point group m, there are significant departures from this symmetry, even among the heavy atoms. Fig. 9 shows, for structures A and B, the deviation of each atom from the best plane of the six ring atoms as determined by least squares when all the ring atoms were weighted equally (negative deviations are toward the origin from the best plane). For structure A the equation of the best plane is:

$$
-0.45861 x+0.87366 y+0 \cdot 16243 z^{*}=0.8272(\AA)
$$

The deviations of the ring atoms from their best plane are possibly significant ($\chi^{2}=9 \cdot 8$ on three degrees of freedom, $P \approx 2 \%$). The equation for structure B is:

$$
-0 \cdot 45847 x+0.8738 \mathrm{l} y+0 \cdot 16202 z^{*}=0.8259(\AA)
$$

In this case the deviations of the ring atoms are generally somewhat larger and apparently slightly more significant ($\chi^{2}=17 \cdot 4, P<0 \cdot 1 \%$).

So far as the extra-ring atoms are concerned, the situation is essentially the same for structures A and B. Atoms $\mathrm{C}_{7}, \mathrm{~N}$, and C_{8} are staggered slightly above and below the best ring plane, and probably significantly so. Further, the carboxyl group is twisted three degrees around the $\mathrm{C}_{1}-\mathrm{C}_{7}$ axis. The configuration of the amino group seems clearly to be planar, consistent with a significant contribution from the resonance structure involving a double bond to the nitrogen.

One of us (G. M. B.) gratefully acknowledges generous support from the U.S. National Science Foundation and from the University of Maryland during a sabbatical year at the California Institute of Technology. He also thanks the Institute for its hospitality.

References

Beilstein (1931, 1933, 1951). Handbuch der Organische Chemie, Vierte Auflage, Vol. 14, 479; I, 599; II, 290. Berlin: Springer.
Bergmann, E. D. \& Pelchowicz, A. (1953). J. Amer. Chem. Soc. 75, 2663.
Cruickshank, D. W. J. \& Robertson, A. P. (1953). Acta Cryst. 6, 698.

Donohue, J. \& Trueblood, K. N. (1952). Acta Cryst. 5, 414.
International Tables for X-ray Crystallography (1959). Vol. 2, Section 2.6. Birmingham: The Kynoch Press. Patterson, A. L. (1935). Z. Kristallogr. 90, 517.

Shoemaker, D. P. (1947). Ph.D.Thesis, Calif.Inst. of Tech. Stadler, H. P. (1950). Acta Cryst. 3, 262.
Waser, J. \& Schomaker, V. (1953). Rev. Mod. Phys. 25, 671.

Wilson, A. J. C. (1942). Nature, Lond. 150, 152.

The Structure of Dimolybdenum Carbide by Neutron Diffraction Technique*

By Erwin Parthé
Department of Metallurgical Engineering, University of Pennsylvania, Philadelphia, Pa., U.S.A. and Varadachari Sadagopan
Metallurgy Department, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.

(Received 12 March 1962)

Abstract

It is generally believed that $\mathrm{Mo}_{2} \mathrm{C}$ has either the hexagonal C 6 cadmium iodide anti-type structure or the related hexagonal $L^{\prime} 3$ structure. A neutron diffraction study showed that this is not the case. $\mathrm{Mo}_{2} \mathrm{C}$ is only pseudohexagonal and crystallizes with an orthorhombic unit cell with $a=4.72_{4}$, $b=6 \cdot 00_{4}$, and $c=5 \cdot 19_{9} \AA$. The atomic arrangement of $\mathrm{Mo}_{2} \mathrm{C}$ presents a new structure type. Space group is $D_{2 h}^{14}-P b c n$. Eight molybdenum atoms are in $8(d)$ with $x=1 / 4, y=1 / 8, z=1 / 12$ and four carbon atoms are in $4(c)$ with $y=3 / 8$. The carbon atoms in $\mathrm{Mo}_{2} \mathrm{C}$ arrange themselves in such a way that each molybdenum atom has three nearly planar carbon neighbours.

Introduction

In the system molybdenum-carbon two carbide phases exist: The monocarbide, MoC , and the sesquicarbide, $\mathrm{Mo}_{2} \mathrm{C}$. The structure of the monocarbide was solved earlier by one of the authors (Nowotny, Parthé, Kieffer \& Benesovsky, 1954). Recent investigations show, however, that it occurs only with a carbon defect and the formula $\mathrm{Mo}_{3} \mathrm{C}_{2}$ has been suggested for this compound (Rudy, Rudy and Benesovsky, 1962). A structure proposal for $\mathrm{Mo}_{2} \mathrm{C}$ dates back as far as 1926. Using the X-ray diffraction technique, $\mathrm{Mo}_{2} \mathrm{C}$ was investigated at that time by Westgren \& Phragmen. Due to the small scattering factor of carbon, they could determine with certainty only the spatial arrangement of the metal atoms. They found them to be arranged in a hexagonal close packing. For each two molybdenum atoms, one carbon atom can be tentatively placed in one of the octahedral holes. One thus receives a structure proposal for $\mathrm{Mo}_{2} \mathrm{C}$ as follows:

[^5]
C6 structure type

Unit cell: Hexagonal: $a=3 \cdot 002 \AA, c=4 \cdot 724 \AA$
Space group: $D_{3 d}^{3}-P \overline{3} m 1$
Point position: 2 Mo in $2(d): 1 / 3,2 / 3, z ; 2 / 3,1 / 3, \bar{z}$ with $z=1 / 4$
1 C in $1(a): 0,0,0$

This structure is identical to the first $\mathrm{Cd}_{2}(\mathrm{C} 6)$ structure type, except the metal and non-metal atoms have been interchanged. This type may be called, therefore, Cd_{2}-antitype. However, modern crystal structure compilations (Pearson, 1958) list the $\mathrm{Mo}_{2} \mathrm{C}$ structure as belonging to the L'3 structure type with the one carbon atom statistically distributed between two possible places.

L'3 structure type

Same hexagonal unit cell dimensions as above.
Space group: $D_{6 h}^{4}-P 6_{3} / m m c$
Point positions: 2 Mo in $2(c): 1 / 3,2 / 3,1 / 4 ; 2 / 3,1 / 3,3 / 4$ 1 C in $2(a): 0,0,0 ; 0,0,1 / 2$

To reveal the true carbon atom positions in $\mathrm{Mo}_{2} \mathrm{C}$, a neutron diffraction study was undertaken.

[^0]: * Contribution No. 2796.
 \dagger Present address: Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. The research reported herein was carried out while G.M.B. was on sabbatical leave from the Department of Chemistry of the University of Maryland in the 1957-58 academic year.

[^1]: * We are indebted to Mr Raymond Ellison and Dr H. A. Levy of the Oak Ridge National Laboratory for assistance in the use of the ORACLE least-squares program for cell parameters.

[^2]: * In part the relatively large initial value of R was the result of an error made when the scale factor was determined from the Wilson plot.

[^3]: * We emphasize that the ellipsoids in Fig. 8 are not the thermal ellipsoids whose principal axes have been found, although their axial directions are the same as those of the thermal ellipsoids.

[^4]: * We resist the temptation to report smaller standard deviations for the averages, as one might be justified in doing if the two data sets had been entirely independent and subject only to random error. Since the two sets of data were obtained from the same photographs, we fear they may be subject to parallel systematic errors.

[^5]: * The experimental part of this study has been supported by the National Science Foundation, the theoretical part by contract AF 49 (638) 1027. This study is in part a contribution from the Laboratory for Research on the Structure of Matter, University of Pennsylvania, supported by the Advanced Research Projects Agency, Office of the Secretary of Defense.

